Partial Hedging Using Malliavin Calculus

Show more

References

[1] J. Cvitanic and I. Karatzas, “On Dynamic Measures of Risk,” Finance and Stochastics, Vol. 3, No. 4, 1999, pp. 451-482. doi:10.1007/s007800050071

[2] J. Cvitanic, “Minimizing Expected Loss of Hedging in Incomplete and Constrained Markets,” SIAM Journal on Control and Optimization, Vol. 38 No. 4, 2000, pp. 1050- 1066. doi:10.1137/S036301299834185X

[3] H. F?llmer and P. Leukert, “Efficient Hedging: Cost Versus Shortfall Risk,” Finance and Stochastics, Vol. 4, No. 2, 2000, pp. 117-146. doi:10.1007/s007800050008

[4] H.-P. Bermin, “Hedging Options: The Malliavin Calculus Approach Versus the -Hedging Approach,” Mathematical Finance, Vol. 13, No. 1, 2003, pp. 73-84.
doi:10.1111/1467-9965.t01-1-00006

[5] D. Ocone and I. Karatzas, “A Generalized Clark Repre- sentation Formula with Applications to Optimal Portfolios,” Stochastics and Stochastic Reports, Vol. 34, No. 3- 4, 1991, pp. 187-220.

[6] P. Lakner, “Optimal Trading Strategy for an Investor: The Case of Partial Information,” Stochastic Processes and Their Applications, Vol. 76, No. 1, 1998, pp. 77-97.
doi:10.1016/S0304-4149(98)00032-5

[7] H.-P. Bermin, “Hedging Lookback and Partial Lookback Options Using Malliavin Calculus,” Applied Mathematical Finance, Vol. 7, No. 2, 2000, pp. 75-100.
doi:10.1080/13504860010014052

[8] H.-P. Bermin, “A General Approach to Hedging Options: Applications to Barrier and Partial Barrier Options,” Mathematical Finance, Vol. 12, No. 3, 2002, pp. 199-218.
doi:10.1111/1467-9965.02007

[9] P. Lakner and L. M. Nygren, “Portfolio Optimization with Downside Constraints,” Mathematical Finance, Vol. 16, No. 2, 2006, pp. 283-299.
doi:10.1111/j.1467-9965.2006.00272.x

[10] F. Black and M. Scholes, “The Pricing of Options on Corporate Liabilities,” Journal of Political Economy, Vol. 81, No. 3, 1973, pp. 637-659. doi:10.1086/260062

[11] V. Bawa, “Optimal Rules for Ordering Uncertain Prospects,” Journal of Financial Economics, Vol. 2, No. 1, 1975, pp. 95-121. doi:10.1016/0304-405X(75)90025-2

[12] I. Karatzas and S. E. Steven, “Methods of Mathematical Finance,” Springer-Verlag, New York, 1998.

[13] D. Nualart, “The Malliavin Calculus and Related Topics,” Springer-Verlag, Berlin Heidelberg, New York, 1995.

[14] B. K. Oksendal, “Stochastic Differential Equations: An Introduction with Applications,” 5th Edition, Springer- Verlag, Berlin Heidelberg, New York, 1998.

[15] M. Musiela and M. Rutkowski, “Martingale Methods in Financial Modelling,” Springer-Verlag, Berlin Heidelberg, 1997.

[16] R. M. Dudley, “Wiener Functionals as It? Integrals,” Annals of Probability, Vol. 5, No. 1, 1977, pp. 140-141.
doi:10.1214/aop/1176995898

[17] I. Karatzas and S. E. Shreve, “Brownian Motion and Stochastic Calculus,” Springer-Verlag, New York, 1991.
doi:10.1007/978-1-4612-0949-2